Kotlin Limitations vs Python

social-media-failThis page will serve as repository of limitations found when attempting to move kotlin code to python code. Some limitations are a natural consequence of moving to static types, others are effectively inherited from Java.

The list here is based on placing those I find most significant at the top, and the further down the list the less significant.

base class parameter pass through

background

Kotlin, like python, allows for optional parameters, a feature not found in Java.  A consequence of this feature is that libraries with heavily used classes can over time evolve to have a large number of optional parameters in the most heavily used methods.  A larger number of parameters should only occur in code in a language that has optional parameters, as without the parameters being optional, every extra parameter  would introduce overhead on every call.  These methods with a large number of parameters are often frequently used methods, and the goal is that well chosen defaults will mean that most of these optional parameters are only provided in exceptional cases.  While a typical instance of the class may require only 2 or 3 parameters, while there may be as many as 20 to chose from.

To find examples, I simply thought: “what are the most widely used python packages I can think of?”.  The first three that occurred to me to check were sqlalchemy,  attr, and Django, and for each of these I looked for the most basic usage cases I could find. The first examples I found are:

  • sqlalchemy:   Table Class  20 optional parameters (see ‘parameters’)
  • attr: atrr.s() function – 9 optional parameters (see attr.s function)
  • Django: Field class – 22 optional parameters (see __init__)

While such a large number of parameters should not normally occur in Java due to lack of optional parameters, I think these example establish that the pattern is common in well regarded python packages.

The Problem.

Consider the Django Fieldclass . This class serves as a base class for several other classes, such as  TextField, TimeField, BinaryField etc.  To code examples like these cleanly, some type of language mechanism is needed which effectively achieves:  “include all fields from the base class constructor (or other method from the base class) as also parameters to this class unless specifically declared in this class“.

Python uses the *args,**kwargs system, which for several reasons is not an appropriate solution for kotlin, but is at least a solution.  There are some more elegant solutions possible for kotlin, and perhaps one will be added at a later time.

In Python the code for defining the BinaryField Class is as follows (not exact code for simplicity):

class BinaryField(Field):

    def __init__(self, *args, **kwargs):
        kwargs['editable'] = False
        super().__init__(*args, **kwargs)
        // other init code goes here

while in kotlin (slightly changed for name conventions and simplicity) the code becomes:

class BinaryField(
        verboseName:String?=null, name:String?=null, primaryKey:Boolean=false,
        maxLength:Int?=null, unique:Boolean=false, blank:Boolean=false,
        nulled:Boolean=false, dbIndex:Boolean=false, rel:String?=null,
        default:Any?=null, //editable:Boolean=true, - force 'false' for editable
        serialize:Boolean=true,
        uniqueForYear:Int?=null, choices:String?=null, helpText:String="",
        dbColumn:Int?=null, dbTablespace:Int?=null, autoCreated:Boolean=false,
        validators:List<Any>?=null, errorMessages:String?=null
 ):Field(verboseName=verboseName, name=name, primaryKey=primaryKey,
        maxLength=maxLength, unique=unique, blank=blank, nulled=nulled,
        dbIndex=dbIndex, rel=rel, default=default, editable=false,
        serialize=serialize, uniqueForYear=uniqueForYear, choices=choices,
        helpText=helpText, dbColumn=dbColumn,
        dbTablespace=dbTablespace, autoCreated=autoCreated,
        validators=validators, errorMessages=errorMessages) {
  // class code here
}

Clearly, the call to the base constructor will be much shorter if not using named parameters, which is a choice, but in a list this long I would use named parameters.

The code (or almost identical code) will be repeated TextField, TimeField and the over 12 other fields that inherit from Field. Any update to the parameter list for the base Field class is tedious to say the least.

This is a case where kotlin requires boilerplate that is not required in python. What is needed is some way to say “accept all parameters to the base default constructor not specifically named in the base call, and pass these parameters through“. Given this problem will not occur in Java libraries which have no default parameters, it may be some time before kotlin designers consider this, if ever.  In the mean time, messy.

Constructor Calls

(to be added: by Nov 13)

Intricate, preset order, class data initialisation

Kotlin has what can appear a rather strange way of implementing the overriding of properties when extending classes.  The result is that when extending classes, the behaviour of initcode can be unexpected.  The way to avoid this is to use lazy properties in place of initialising during init.

open class Base{
    val simple = 3
    open val open = 3
    open val openGet = 3
    open val getter get()= 3
    open val getOpen get()= 3
    open val getDelg by GetDelg(3)
    init {
        println("base simple $simple open $open openG $openGet "+
                "getOpen $getOpen getter $getter "+
                " getDelg $getDelg")
    }
    //open fun add(a:Int,b:Int) = a + b
}

class SubClass:Base(){
    override val open = 4
    override val openGet get()= 4
    override val getter get() = 4
    override val getOpen = 4
    //override val getDelg by GetDelg(4)  //uncomment for null pointer
    init {
        println("sub simple $simple open $open openG $openGet "+
                "getOpen $getOpen getter $getter "+
                " getDelg $getDelg")

    }
}
class GetDelg(val value:Int){
    operator fun getValue(thisRef: Any?, property: KProperty<*>): Int {
        return value
    }
}

The print from instancing a SubClass object is:

base simple 3 open 0 openG 4 getOpen 0 getter 4 getDelg 3
sub simple 3 open 4 openG 4 getOpen 4 getter 4 getDelg 3

 

Open is 0 in the base class init because the code to set the value has not yet been run, but not it is not 3 as you would expect.

openG, a value overridden by a get() method, perhaps unexpected returns the override value in both init() methods

getOpen, a get() method in the base overridden by a simple initialisation, behaves as a simple initialised value overridden by a new initialise, which is to be unitialised in the base init() method

getter() , a get() method overidden by another get() method returns the override value as does openG

getDelg() actually generates a null pointer exception if called during  the base init() method, as the overridden value has not been calculated

Note: part of this behaviour is base on the fact that overridden properties are actually new distinct properties, so the do not inherit values from base class property which is still accessible via super.<name>.  This means, counterintuitively, that open in the base init() method, returns 0while super.open in the subclass init()will return 3

I will update with more on the use of lazy to avoid this issue, but the main point is to think carefully before initialising values in a base class that are open.

*args, **kwargs (to be added)

A specific use of *args and **kwargs has already been covered in base class parameter pass through.

Outside of that specific use, kotlin does have effective equivalents to most use cases, but may depend on the reflections library, which is not available on all platforms at this time.

vararg parameters capture the equivalent to a *args list, and allows for using the list for calling in a manner very similar to python.

callBy provide most of the functionality of **kwargs when used for calling functions, but some code is needed to map parameter names to KParameters.  A link to such code may be added to this page is someone asks 🙂

For cases where it is desired to capture parameters in map for, using a map actually makes better sense in every case I have found, but I will update this further if I find a case where this is not true.

Advertisements

When will your project ‘grow up’ and require typesafe code?

originalThere is common belief that after an initial very agile development period,  “grown up projects should switch to a static typed language”.  This also raises the question, “are type-safe languages less suitable for early stage development?”  This page considers the evidence for these beliefs, plus considers if there is a benefit to starting dynamic and switching to static, what is the crossover point?

TL;DR? As usual, read the headings and choose only read beyond the heading when you choose.  But in summary, modern statically typed language, and specifically kotlin, are bringing forward the point where adoption is logical, to the point it can now be argued that any project that justifies its own repository, would benefit from starting out as a kotlin project. Continue reading “When will your project ‘grow up’ and require typesafe code?”

Classes, Objects and Instances

Topics for this page:

Background

Python, Kotlin or Java, which best supports Object Oriented Programming (OOP)?

History.

Simula 67 (in 1967) was probably the first Object Oriented Language.  It was a great language, but wow was it slow!  And slow even on the massive mainframe computers it lived on.

The origin of C++ was to add the power of Object Oriented Programming to the very efficient language C, while still delivering real performance. In first reference book on C++ was released in 1985 (tired of waiting for everyone to have access to the internet?) at a time when micro-computers were popular, but far slower than even old mainframe computers.  The result was a language with great control over how objects were created, but in reality necessarily severely compromised by the features to deliver performance.

Java began life as Oak in 1991, but was only used by the original team until 1995 and then had a very short gestation to reaching 1.0 in 1996.  Java delivered greater ease of Object Oriented Programming than C++, and with good performance even with the added layer of a virtual machine.  While the language is hardly truly Object Oriented throughout,  it struck winning formulae with a balance of Object Oriented and performance.

Python had origins also in 1991, but did not really get public exposure until python 2.0 in the year 2000, and did not get full object orientation until ‘new style classes’ were introduced at the end of 2001. Computing power had moved a long way between 1996 and 2001 (consider the 150Mhz 1995 Pentium pro vs the 1.3Ghz 2000 Pentium 4),  and python was targeting easy of programming over ultimate performance anyway.  As you can guess as a result python was able to be Object Oriented throughout instead of just having an outer veneer of being Object Oriented.  But yes, still slower than Java.

Of course for Kotlin, designed in 2011 and having version 1.0 released in 2016, having Object Oriented structure throughout and adding features for functional programming as well was not even really a challenge. But slower than Java? Sometimes, but a 2016 technology compiler that ran run in a 2016 computer with gigabytes of memory available (windows 3.1, the common version at the time of Java release, required 1MB of Ram!) can optimise and produce almost the same code.  Oh yes, the compiler is slower than a Java compiler can be, but is it a problem?

OOP Myths.

But Java has created some OOP myths with almost a generation of programmers learning OOP on Java.

“This program cannot be True OOP, where are the getters and setters!”

That encapsulation requires getters and setters is actually true.  That you have to write your own getters and setters just to access and store data is not true.  Both python and kotlin automatically provide getters and setters without the programmer noticing unless the program requires non-standard behaviour from the getters and setters. Java requires the program writes their own getters and setters in order to allow breaking the rules of OO for performance reasons.

True OOP requires and functions and data to be inside a class so every thing is an object!

True OOP does have everything as an object.  Functions, all data types, everything.  For performance reasons Java broke this rule.  Understandable, but breaking the rules of OOP does not make the language more OO.  Functions should be ‘first class functions’ and in java they were not, for performance reasons.  Putting the non-OOP functions inside an object at least gave them an Object Wrapper, and the same applies for Java primitive data types.  Modern OO languages do not need to wrap functions or data in a class because functions and data are always already objects.

defining classes: constructors and init

python vs kotlin Syntax

# syntax is:
class <Name>(<base classes>):
    def __init__(self, <parameter list>):
        # put init code here
#now example 1
class Fred:
    def __init__(self, var1, var2):
       self.var1 = var1
       self.var2 = var3
       self.container = []
#and example 2
class Fred(BaseClass):
    def __init__(self, var1, var2):
       super().__init__(var1)
       self.var1 = var1
       self.var2 = var3
       self.container = []
           # rest of init here

Hopefully the above python code is self explanatory. Example 2 adds a base class.  I do not deal with multiple inheritance at this time, and will devote a specific page at some future time as for python it gets complex, and for kotlin it requires additional concepts.  Now here is the kotlin ‘imitate python’ equivalent to example 1.

//syntax is:
//
<optional modifier> class <name>(<default constructor params>): <base>
//
// example 1a:bad version- to be python like - not best kotlin
class Fred{
    val var1: Int
    val var2: String
    val container: MutableList<Int>

    constructor(var1: Int, var2:String){
        this.var1 = var1
        this.var2 = var2
        this.container = mutableListOf<Int>()
    }
}
// example 1b: still bad version- to be python like again- not best kotlin
//  move 'constructor' to class definition, now contructor body is 'init'
class Fred constructor(var1: Int, var2:String){
    val var1: Int
    val var2: String
    val container: MutableList<Int>

    init{
        this.var1 = var1
        this.var2 = var2
        this.container = mutableListOf<Int>()
    }
}

// example 1c:better - 'constructor' keyword omitted and defines variables
// in the primary constructor
class Fred(val var1: Int, val var2: String){
    val container: MutableList<Int>

    init{
        container = mutableListOf<Int>()
    }
}

First the ‘not the best kotlin way’ examples. Is constructor or init the best equivalent python __init__? The first example keeps the class definition more similar to python, and uses a constructor to perform the role of the python __init__. In kotlin, a class can have multiple different constructors to enable constructing an object from different types. So there could be another constructor accepting String in place of Int for the parameters.

But where the python code simply assigns to self.var1 without first declaring var1, in kotlin all variables must be declared, so example aside from the declarations of the three instance variables (var1, var2 and container) and constructor in place of __init__, 1a above looks almost directly like the python version. However, in this form, there is more code than the python version.

Version 1b above moves the constructor(var1: Int, var2:String to the class declaration. Doing this makes this the default constructor for the class, but the body of the constructor method cannot be on this line declaring the class so the body of the constructor is now called init, and the class declaration reads: class Fred constructor(var1: Int, var2:String).
init is the special reserved word to identify the block of code which is the body of the default constructor.

So example 1b is very similar to example 1a, but introduces the concept of a default constructor and the init block.

Example 1c introduces some improvement. A common pattern is that values to the constructor (__init__) as saved as instance variables. Simply adding var or val in the constructor means the parameter is the declaration, plus this result in the constructor automatically saving the values passed in. So we lose 4 lines of code as unnecessary (two declarations, plus 2 assignments). We can also omit the word ‘constructor’ for the primary constructor except for some rare special cases. So now the code is almost as brief as the python code. But there are still optimisations to come.

// example 1d:best
class Fred(val var1: Int, val var2: String){
    val container = mutableListOf<Int>()
}
// example 2
class Fred(val var1: Int, val var2: String):BaseClass(Var1){
    val container = mutableListOf<Int>()
}

So for example 1d, the code is now more concise than python, despite the declaration of variables. Yes, container does now look like a python class variable, but this is how instance variables are in kotlin. So the code is brief with types, and perhaps more so than the code without types. This is because the remaining code in the kotlin constructor prior to this step, initialisation of container, can happen at the declaration of container. So no Normally, all code needed in a constructor is setting initial values, so normally no init block is needed as initial values at the definition, either automatically in the case of default constructor parameters, or at the definition in the main block of other instance variables.

Example 2 covers a class with a base class, just for completeness, to have the syntax covered.

instance vs class variables

Consider the following python code:

class Person:
    age = 21

    def __init__(self, name):
       self.name = name
       self.otherName = ""
       self.fullName = name

name, otherName and fullname are instances variable or properties, which means for each Person there is a new copy of each variable. Without a person object, there is no name, otherName or fullName. But age is a class variable, so it exists exactly once, even if there are no Person instances, and regardless of how many person instances.

>>> p1= Person("Fred")
>>> p2= Person("Tom")
>>> p1.age  # access class variable just like instance variable
21
>> p2.age  # same value both times
21
>>> Person.age = 22 # change value in class
>>> p1.age # and p1.age automatically has the new value
22
>>> p2.age # and so does p2.age
22
>>> p2.age = 19 # set p2.age creates an instance variable
>>> p1.age # p1 is still using the class so unchanged
22
>>> p2.age # but p2.age shows the instance, which hides the class variable
19
>>> del p2.age // now delete the instance variable
>>> p2.age  // but the class is still there
22
>>> 

The above code plays with how instance variables in python can have the same name as class variables, but hide the class variable.

Now to kotlin. As we saw in class definition, instance variables in kotlin are defined in the way closer to how class variables are defined in python.

Code which appears in the class definition and defines and sets the value of a variable, is actually run every time an object of the class is instanced. This is very useful, because it makes the most common case the one that is simpler, while with python the simpler code is the class variable, and they are less common.

With kotlin there is no automatic class object at run time, with information on class methods and properties held internal to the compiler. To have an object at run time to hold information for the class information for runtime including class variables, kotlin classes have a ‘companion object’. So the reverse of python, kotlin instance variables are declaring at the class level, and class variables are declared inside a container, the companion object container.

The kotlin companion object is the parallel of the class object in python. Any methods or variables in the companion object will be class based and exist once per class, regardless of whether there are zero or more instances of that class.

Most access to class based data will happen from inside the class, but if you do wish to access class based data from outside the class, you do need a ‘getter’ and/or a setter, which are not normally needed in kotlin, but this is an unusual case, and for completeness it is covered here.

class Person(val name:String) {  // instance variable declared in constructor

    var otherName = "" // an instance variable not from a parameter
    var fullName = name //instance variable manually set from parameter

    companion object {
       var age = 21  // class variable age
    }

    var staticAge get()= age   // instance property as getter and
        set(value){age = value}   // setter for age - see properties
}

The staticAge is needed for the example, but most often access to get or set a class variable like age will happen from within the class, so no staticAge would be needed.

p1 = Person("Fred")
p2 = Person("Tom")
p1.staticAge  // access class variable like instance only within class
21
p2.staticAge  // use instance with getter from outside class
21
Person.age = 22 // change value in class
p1.staticAge // and p1.age automatically has the new value
22
p2.staticAge // and so does p2.age
22
// cannot create instance value at runtime
// no workable equivalent to python class and instance with same name

The main point is that while defining a variable in the class scope in python creates a class variable, in kotlin creating at this scope creates normal instance variables (or properties).  Class variables (also know as static class variables) in kotlin are created within the companion object for the class, which is a single object as a container for the class, rather than each instance of the class.

self vs this

Access to variables of an object from outside the code of class definition (as in the previous example), is the same for python and kotlin. The code p1.name will access the name variable from the object p1.   Code inside the class must work without any actual object name, so another naming system is needed.  The naming for python is self to indicate the current object, and for kotlin this to indicate the current object.  But the python self is needed far more often than the kotlin this, so in python self.name for the object variable or property, and this.name in kotlin, but in kotlin the this. is only needed when there is a parameter or local with the same name, and normally the this. can be omitted.   So a lot less this in kotlin than self in python.

Again, in python the first parameter to each method in a class should be self, this is not included in the parameter list in kotlin.  Again, less this than self.

# consider in method defintion
    def setNames(self, name): # self as first parameter
       self.name = name
       self.otherName = ""
       self.fullName = name # use name as fullname
//method definition in kotlin
   fun setNames(name): // no 'this' in parameter list
       this.name = name // 'this.name' is property, 'name' is parameter
       otherName = "" // only one 'otherName', so do not need 'this.'
       fullName = "" // also only one 'fullName'

properties: getters and setters

Traditionally, java programmers have been taught that encapsulation (a key part of OO) requires building a class so that how things work can be changed without affecting code using the class. To do this ‘getters’ and ‘setters’ are required, to provide for changes to how data inside the class is used. Instead of allowing a variable to be accessed or set from outside the class, a getter method is created to get the value, and a setter method to set the value. The idea is functions already there in place ready for a possible time when getting or setting is to be become more complex.
Modern languages have identified problems with this approach:
almost all getters and setters just get or set the value and do nothing else so they just bloat the program
it is much clearer for the calling code to get the value of a variable or have an assignment statement to set the value – even when what is happening inside the class is more complex

The solution is:
require code only for the complex cases
ensure setting and getting from outside the class looks the same for simple and complex and is most readable.

Consider this python class:

class Person:
    def __init__(self, name):
       self.name = name
       self.otherName = ""
       self.fullName = name

>>> tom = Person("Tom")  #instance object
>>> tom.fullName = "Tom Jones" # set property using object
>>> tom.fullName  # get property
'Tom Jones'

getting and setting is as simple as possible when using the class, but what if we do wish to ‘complicate’ the fullName property changing the value from being simply its own data, to being the result of name together with otherNames?
Consider:

class Person:

    def __init__(self, name):
       self.name = name
       self.otherName = ""

    @property
    def fullName(self):
	    return " ".join([self.name,self.otherName])
    @fullName.setter
    def fullName(self,value):
	    if " " in value:
	        self.name,self.otherName = value.split(" ",1)
	    else:
	        self.name = value
	        self.otherName = ""
>>> bob = Person("Bob")
>>> bob.otherName = "Jones"
>>> bob.fullName
'Bob Jones'
>>> bob.fullName = "Bobby Smith"
>>> bob.name
'Bobby'
>>> bob.fullName
'Bobby Smith'
>>> bob.otherName
'Smith'

Now we have the new implementation, and all code written before the change will still work.

class Person(var name:String) {  // instance variable declared in constructor

    var otherName = "" // an instance variable not from a parameter
    var fullName
        get()= listOf(name,otherName).joinToString(" ")
        set(value) {
            val (first,second) =
                    if(' ' in value) value.split(" " ,limit=2)
                    else listOf(value,"")
            name = first
            otherName = second
        }
}

The kotlin code for having getters and setters is less changed by adding getters and setters. Simply follow the variable (or value) property declaration with the get and/or set methods.

More?

What is not covered?
Super, which I feel needs no explanation, and
Delegated properties and more complex cases with does need more. I will add a separate page on these but for now see this page, and delegated properties are described here.

Extension functions will also be covered separately.

Implementation: what is a practical approach?

Any software team who is considering moving to kotlin, must by definition, be currently using at least one alternative language.  To change languages, and ecosystems, is a big step.  One of the key features of kotlin is how easily and seamlessly a project can migrate from java.  Currently, that same ease of migration is far less real from outside the java ecosystem.

Cold Turkey? Or step by step?

On rare occasions, there may be the opportunity to commence a complete new project and build each component with no basis on any legacy system.  If starting an entirely new project but not already experienced in kotlin, it will still require a huge leap of faith to start an entire development in kotlin.

More often, and in the project we are currently working with, the realistic path is to choose system components that can move to kotlin.

The candidates:

Individual pages discuss these sections, but the spoiler alert is that mobile/android development may not be the logical first choice it would on the surface seem.

Kotlin DSL templates with Python (or any other) Server

The Concept: A replacement template engine written in Kotlin DSL

Kotlin can replace the template system for a python server, or ruby server, or any other server, with no change to the server other than the template system, regardless of what language is used for the server itself.

This allows replacing mako, or jinga2,  Django templates, with kotlin DSL templates.  No kotlin or jvm installation is needed on the server, as the kotlin dsl templates can run as javascript in the browser.

Why? : A more dynamic and concise solution

Template engines are generally considered a method of producing ‘dynamic’ web pages.  While a ‘static’ web page always displays the exact same html, templates produce html which reflects the data presented to the template.  For example, a ‘member’ page will have the information for the member currently logged in,  while a static home page will display the same information to everyone.

However pages generated by templates are not necessarily ‘dynamic’ in a web2.0 manner.  The page is ‘generated on the fly’ by the template engine, but does not necessarily run dynamically in the client browser.  To the client browser, the page appear static.

These kotlin DSL templates are a complete rethink of how templates work, and inherently produce code that is also dynamic on the browser and the entire system makes adding true dynamic content far simpler.

Further, the description of page content becomes more concise than with conventional templates.

More Languages? Or Less?

It could be seen that adding kotlin to do templates means adding yet another language to the toolkit in use with a project, however this is only proposed as substitute for mako, jinga2 or some other template language, so there is also one language no longer required.

Kotlin is far more complex than any template language, but using the kotlin DSL as described here does not require learning the full kotlin language.   The further benefit is that learning a template language just for templates has no other uses, while it is very likely there are other possible uses of kotlin (e.g. Android?)  within a project.  If kotlin has an additional use within the project, then using kotlin for templates could mean one less language overall.

How do these Kotlin DSL templates work?

A conventional template is like a more powerful version of the python format function.

Consider:


"person: {name} age: {age}".format(name="fred",age=35)

This is equivalent to the string being a template that is supplied data in the form of the ‘name’ and ‘age’.  The string is modified by the data, to produce a final string.  Templates just allow more power with modifying the string.

The kotlin DSL templates I am discussing, actually run in the browser, not on the server.  The template can look similar to html, but it is code, not a string.  Using simple python format statement for a simple example of templating, the template might be:

<html>
    <body>
person: {name} age: {age}
</body>
</html>

and by processing the template with our data, the final page is prepared on the server and sent to browser.

However with the kotlin templates discussed, our layout inside the ‘html’ tag, is not present inside html sent to the browser, and in place of the content will normally be an emply placeholder ‘div’ tag.  Javascript code to instance the ‘body’ and ‘p’ tags inside the placeholder ‘div’ is sent as the template, and this code will read the jsondata (where present) and provide the correct content inside the div tag.

Different perspective?  HTML vs DOM

One perspective is to think of a web page and the html as basically synonymous.  Another perspective is to think of the web page is the DOM, and html is just data describing that DOM.  With this second paradigm, we could consider: “what if the DOM itself is described by javascript, not by the html code?”

This makes our web page:

<html>
  <body>

<!-- first a json script to hold any json data  -->
<script id="data" type="application/json">{jsondata}</script>

<!-- now here is the div where our main content will be added -->
<div id="page"></div>
<!-- now the script for the page content >
  <script src="{templatename}"></script>

  </body>
</html>

As you can see, the html to describe page content just an empty ‘div’ in the page.  So the DOM must get the page content part of  DOM from the kotlin DSL.  In fact this same html above, is now used for every page on the web site. The only part that changes is the {jsondata}, and  changing the {templatename} to the actual values for these to be used.  The sample above is perfect for using with a python format to substitute actual names,  but in testing if just sending the html file, then just set these to the values for testing.

What does the Kotlin DSL look like?

Of course the page above does nothing without the javascript,  because the javascript it generating the tags for the main part of the web page.   The only HTML is outside skeleton, and the main content of the page is described in kotlin DSL instead of in HTML.  Here is a very simple ‘main part of the page’ with just a

text

with a heading of ‘heading’ for content.

val div = document.create.div {
h1 { +"heading" }
    p { +"text" }
}

The document.create.div is needed for the very outer layer, and all the html tags inside become very clean and simple.  Using data within the page, or having tags produced in a loop, is all automatic by just using more of the kotlin language.

See the link: kotlin javascript tutorial for more on the DSL for html and how to configure Intellij and install the jar file for kotlinx.html

For a working example of the template scheme described on this page, see the ‘hypothetical programmable calculator’ as described in the page Machine code and Global Memory.  The code for the calculator with code for a kotlin DSL template example can be found in the repository.